
Software Bug Location Algorithm on the basis of the Integration of Fuzzy Multi-
objective Model 

Gao Yinsheng 

Xi’an University, 710065 

Keywords: Bug Location; Fuzzy Multi-objective Model Analysis; Software Measurement; 
Software Testing 

Abstract: Bug location is an important part of the software development process. Making full use 
of the structural features and behavioral features of the program is conducive to improving the bug 
location efficiency. In this paper, a kind of bug location framework on the basis of the integration of 
the fuzzy multi-objective model is put forward to carry out the bug location at the class method 
level on the new version of program during the evolution of software. Firstly, a set of indexes for 
the measurement of the structural features and the behavioral features are designed. Through the 
static analysis and the testing program, the feature datasets of the old versions of programs are 
collected and constructed. At the same time, the old versions of bug information are obtained from 
the bug tracking system. Secondly, on the basis of the resulting feature datasets and bug information, 
the univariate analysis is used to filter out the indexes from the measurement indexes that are 
significantly related to the bugs. Subsequently, the significant indexes that have been selected are 
used to carry out the multivariate analysis and perform training on the integrated fuzzy multi-
objective model. Finally, the feature data set of the new version of program is collected and 
constructed on the basis of the selected significant indexes. And the fuzzy multi-objective model 
obtained is used to predict the error probability of each class method. The class method is further 
inspected in accordance with the error probability in a descending order to achieve the error 
location. The empirical study of the bug location is carried out on the basis of a set of open source 
programs. And the results show that the efficiency of bug location can be improved through the 
integration of the fuzzy multi-objective model. 

1. Introduction 
Software is a complex artificial product that has profoundly changed the production method and 

lifestyle of human beings. Due to the restriction of human intellectual activities, it is often 
inevitable that bugs are introduced into the new version of programs in the evolution process of the 
software. And these potential bugs often result in losses to the user [1-2]. Hence, elimination of the 
software bugs and improvement of the quality of software evolution is an important subject to be 
solved urgently in the field of software engineering. People often make use of the program analysis 
to identify bugs or expose the bugs in the program through the testing software [3]. Studies have 
shown that some of the program bugs are caused by the complex program structures, such as the 
recursive calls and the complex loops, which can easily lead to program errors [4-5]. On the one 
hand, the static information of the program can fully reflect the structural features of the program; 
on the other hand, the dynamic information in the program testing can reflect the behavior features 
of the program under certain conditions (test input) [6-7]. In accordance with whether to use the 
information during the running of the software as well as how to make use of such information, the 
existing software bug location algorithms can be divided into three categories. The first category is 
the statistical fault location method SFL on the basis of the program spectrum [8-9]. In this type of 
methods, the information during the program testing process (that is, the statement, the predicate, 
the execution path or the function and other coverage information) is collected for statistics. And 
their correlation with the program running results is analyzed. A certain kind of heuristic calculation 
formula for the degree of skepticism is given to estimate the possibility of error. And finally, the 

2019 2nd International Conference on Intelligent Systems Research and Mechatronics Engineering (ISRME 2019)

Copyright © (2019) Francis Academic Press, UK DOI: 10.25236/isrme.2019.027149



program entity is inspected in the descending order of the degree of skepticism until the bug is 
located [10-11]. The second category is the software bug location algorithm based on the program 
slicing. The program slicing makes use of the dependency analysis to identify the sets of statements 
in the program that affect the specific program entity [12-13]. The slicing technique can effectively 
separate the sentences related to bugs, and thus has become an effective tool for assisting the 
location of bugs. The third category falls under the static analysis method [14-15]. This kind of 
method first analyzes the static structure information of the program that has been acquired, and 
then combines the syntax and semantic constraints of the program design language to detect the 
program violations or locate the software bugs by means of the symbolic execution, formal proof 
and other techniques [16]. 

On the basis of the above analysis, a kind of bug location framework that integrates the fuzzy 
multi-objective model is put forward in this paper, which is used to locate the bugs of the new 
version of the software at the class method level during the evolution of the software. Specifically: 
First of all, a set of measurement indexes that cover the structure features and behavior features of 
the software is designed. And the feature data sets are constructed by using the static analysis and 
the software test tracking. Secondly, univariate analysis is carried out in combination with the bug 
information in the old version of the software to screen for the feature indexes related to the 
significant bugs and construct the fuzzy multi-objective model analysis model. And the screened 
feature data and bug information is used to train the model parameters. Finally, the feature data set 
for the new version of the program is constructed. The integrated fuzzy multi-objective model 
obtained from the training is used for the bug prediction and location. And we carry out the 
empirical study of the bug location model put forward in this paper on a set of benchmarking 
programs. 

2. Preliminary Knowledge 
The bug location in this paper is achieved by calculating the probability of a bug contained in the 

class method. For each class method in the system, it is assumed that whether the bug can be 
detected is an independent event (denoted as Y = 1). And the probability of this class method 
containing the bug is prob (Y = 1). For a given class method, if prob (Y = 1) > ω, the class method 
contains a bug; otherwise, it contains no bug (ω stands for the specified threshold value). 

Definition 1 Univariate analysis. Given the independent variable x and the dependent variable y, 
the fuzzy multi-objective model y = f (x) is used to analyze the statistical correlation of the variables 
x and y. 

In this paper, the variable x stands for the measurement on a certain index (such as the number of 
the lines of the code) of the class method, and y stands for the bug information of the class method 
tracked by the bug tracking system. The univariate analysis is used to identify the variables that are 
significantly related to the bug (with the statistical significance level 0.05α = ). 

In order to determine the variables used in the fuzzy multi-objective model, it is necessary to first 
analyze the statistical correlations between the individual measurement and the bugs, so as to select 
those variables that are significantly related to the bugs for the subsequent fuzzy multi-objective 
model. 

Definition 2 Multivariate analysis. The fuzzy multi-objective model y = f (x1, x2, …, xm) is used 
to analyze the bug correlation of the measurement xm for a set of independent variables x1, x2, …, 
xm and the dependent variable y. 

In this paper, the variable x1, x2, …, xm are the variables that are significantly related to the bug 
screened out by the univariate analysis. And y stands for the bug information of the class method 
tracked by the bug tracking system. The f (x) stands for the fuzzy multi-objective model selected. 
And its form is as the following: 

 

0 1 1

0 1 11 2
e( , , , )

1 e

m m

m m

c c x c x

m c c x c xx x xπ
+ +

+ +=
+







 (1) 

150



The fuzzy multi-objective model is a kind of standard technique on the basis of the maximum 
likelihood estimation. And the equation (1) stands for the multivariable fuzzy multi-objective 
model. In the bug location, the fuzzy multi-objective model is first trained by the known bug 
information and the measurement information of the class method to determine the model 
parameters (c0, c1, …, cm). And then in the bug location, the dynamic information of the new 
version of the program and its class method structure measurement information are used as the 
model input to calculate the degree of skepticism of the class method. 

Definition 3 Fuzzy multi-objective prediction. A set of measurement x1, x2, …, xm is introduced 
into the constructed fuzzy multi-objective model y = f (x1, x2, …, xm) to calculate a set of predicted 
values. In this paper, for the measurement of the selected variables x1, x2, …, xm that are 
significantly related to the bugs, the data set in the new version of the software is constructed. And 
the fuzzy multi-objective model constructed by the training is used to calculate the prediction 
value of each class method. And from the equation (1), it can be inferred that the calculation 
formula for the error probability of each class method is as the equation (2) in the following 

 
,1

1

i

i

eprob i n
e

p

p= ≤ ≤
+  (2) 

In this paper, prob stands for the conditional probability that bug is present in the class method, 
that is, the probability of identifying a bug in the class method under a set of variables x1, x2, …, xm.  
For example, prob = 0.6 indicates that there is 60% probability that the corresponding class method 
has the presence of a bug. And during the location of bugs, it is possible to identify the highly 
suspicious class method on the basis of the given threshold value (such as prob > 0.5). 

3. Software Bug Location Algorithm 

3.1. Method Framework 
Our method framework is shown in Figure 1. It mainly includes three phases: the pretreatment 

phase, the model construction phase and the fuzzy multi-objective model phase. Among them, 
mainly two tasks are accomplished in the pretreatment phase: (1) Run the program in accordance 
with the test case; (2) Obtain the structural information of the class method. For example, the 
number of the lines of the code in the class method, the complexity of the loop and so on. And the 
purpose of the model construction phase is to screen out the variables that are highly related to the 
bugs by means of the univariate analysis and to train the fuzzy multi-object model accordingly. The 
main purpose of the fuzzy multi-objective model phase is to predict the bug correlation of each 
class method by means of the multivariable fuzzy multi-objective model, that is, the degree of 
skepticism of the class method. In the subsequent section, the next two phases will be introduced in 
detail, followed by our entire algorithm flow for the bug location. 

3.2. Model Construction 
The first step in the model construction phase is to select the variables that are significantly 

related to the bug by means of the univariate analysis. And the second step is to train the fused 
fuzzy multi-objective model using the filtered variables in combination with the bug tracking 
information. 

By means of the static analysis and the program operation tracking, we can obtain a few 
measurements of the program structure features and the behavior features, as shown in Table 1 in 
the following. 

 

151



 
Figure 1 Framework of the software bug location method 

Table 1   feature measuring and bug tracking of legacy software 

Metbod 
number 

Static features Static features #fault(y) X1 X2 .... xv .... xm 
1 e11 e12 .... e1k .... e1m f1 
2 e21 e22 .... e2k .... e2m f2 
. 
. 
. 

. 

. 

. 

. 

. 

. 
 

. 

. 

. 
 

. 

. 

. 

. 

. 

. 
n en1 En2 .... eck  enm fn 

Table 1 shows the information of a program feature measurement with n methods. Among them, 
the first column shows the numbers of all the program class methods; the last column shows the 

number of known bugs ( [1, ])if i n∈ contained in each method obtained by the bug tracking system; 

the middle ( [1, ]), [1, ]ije i n j m∈ ∈ shows the information of the variables obtained from the program 
structure feature measurement and the dynamic feature tracking. And these variable variables 
correspond to the structural features and the dynamic behavior features associated with the class 
method in the program, respectively, which are denoted by x1, x2, …, xm, respectively. As the 
existing program complexity measurement oriented towards the subject is mainly targeted for the 
class measurement, its measurement index cannot be directly applied in this method. We refer to the 
design method of the above-mentioned measurement set and combine the commonly used 
measurement in the existing bug location, the number of lines of code in the class method and the 
circle complexity are used measure the static features of the class. And the number of times that the 
class method is used to cover all the successful or failed testing is used to measure the dynamic 
features. 

The y = f (x) model is used carry out the univariate analysis on each variable ( [1, ])jx j m∈ and 
test the correlation of the variable with the bug. Here the vector y stands for the number of bugs 
contained in each method, that is, the last column in Table 1. The variable xj corresponds to the 
static information and the dynamic information sub column in Table 1. The linear fuzzy multi-
objective model is selected for the f (x) here. And in the univariate analysis, the fuzzy multi-
objective model is carried out on the above x and y successively. And the variable x that is 
significantly related to the bug (significant level) is selected for the subsequent fuzzy multi-

152



objective model. 
3.3. Fuzzy Multi-objective Model 

The intuitive meaning of the bug location in the fusion fuzzy multi-objective model can be 
expressed as the following: For each class method, the static structure measurement information and 
the dynamic behavior information are collected in turn. And the degree of skepticism is calculated 
based on the integration of the trained fuzzy multi-objective model. For a new version of the 
program, we first analyze the static structure information of the program; at the same time, the 
program test cases are run to collect the program dynamic information. The results collected are 
recorded as the sub columns of the static features and the dynamic features as shown in Table 2. 

Table 2 Features measuring of evolved software 

Metbod 
number 

Static features Static features Faull(prob) X1 X2 .... xv .... xw 
1 e11 e12 .... e1v .... e1w P1 
2 e21 e22 .... e2v .... e2w P2 
. 
. 
. 

. 

. 

. 

. 

. 

. 
 

. 

. 

. 
 

. 

. 

. 

. 

. 

. 
n en1 en2 .... env  enw pn 

The ( [1, ])jx j ω∈ in Table 2 stand for the variables that are screened out from x1, x2, …, xm in 
Table 1 that are significantly related to the bugs. Different from the known error in the program 
directly represented by the last column in Table 1, the last column in Table 2 stands for the 
possibility of the occurrence of error in the corresponding method. 

The calculation method is to make use of the model established in phase II, input the information 
obtained from the tracking analysis of the new version, and further carry out the Logistic analysis 
and prediction to obtain the predicted value for each method. And for the error probability 
corresponding to each method Pi, it can be calculated in accordance with the equation (2). In the 
next section, the class method is inspected in a descending order of error probability to find out the 
bugs in the software. 
3.4. Process of Bug Location 

After the analysis of the above two key treatment processes, Algorithm 1 gives the bug location 
process on the basis of the fuzzy multi-objective model. 

In the algorithm 1, the bug location input is carried out based on the integration of the fuzzy 
multi-objective model as the following: X, /* Measurement index set */ 

', ,P P   /*stand for the old version of the program and the new version of the program, 
respectively */ 

',T T . /* stand for the set of test cases for the old version of the program and the new version of 
the program, respectively*/ 

Output: prob. /* Error probability of the new version program class method */ 
1) ( , , )F Construct X P T= ;/* Construct the feature set of the old version of the program */ 
2) ()y faultTrace= ;/* Obtain the bug information through the bug tracking */ 
3) 'X =∅ ; 
4) For each do /* Select the indexes significantly related to the bugs */ 
5) ( )iy f x= is used to carry out the univariate analysis; /*y stands for the bug information*/ 
6) If xi and y are significantly related then/*p-value < 0.05*/ 
7) ' ' { }iX X x= ∪ ; 
8) End if 
9) End for 

153



10) Log_model=Train (F, 'X ); /*Train the fuzzy multi-objective model */ 
11) 'F =Construct (( 'X ， 'P ， 'T ); /* Construct the new version program feature set */ 
12) pred=predict（ 'F ， 'X ，Log_model）;  
13) e / (1 e )pred predprob = + ;  
14) b return prob. 
The algorithm is described as the following: In Line 1 to 2, the feature set F and the bug 

information y are constructed as shown in Table 1. Among them, the Construct function indicates 
that the feature set is constructed through the static analysis and the tracking program testing 
operation. In Line 4 to 9, the measurement index X' that is significantly related to the bugs is 
screened out through the univariate analysis. In Line 10, the data in the feature set F that are 
corresponding to the measurement index significantly related to the bugs are used to train the 
integrated fused fuzzy multi-objective model in combination with the bug information 2 obtained in 
Line 2. In Line 11 to 13, the construction of the feature set n for the new version of the program is 
implemented, and the trained model is used to carry out the bug location prediction. 

4. Empirical Study 

4.1. Experimental Subjects and Environment 
We have selected four Java programs as the experimental objects. And the features of the 

programs are shown in Table 3 as the following. 
Table 3   characteristics of subjects 

Name of the 
program 

 

Executable lines 
of code 

 

Number of class 
methods 

 

Number of test 
cases 

 

Number of 
errors 

 
Print-tokens 478 25 4 130 5 

jtcas 181 9 1 608 29 
nanoxm1 v1 3 497 118 214 7 
nanoxm1 v2 4 009 173 214 6 

The first program in Table 3 is from the JAVA version of the Siemens program package, and the 
rest of the programs are from the SIR (Software-artifact Infrastructure Repository) [15]. The number 
of the lines of the codes in all the programs ranges from 181 to 4009, and the number of class 
methods ranges from 9 to 173. These are widely applied as the benchmark programs in the studies 
of the software bug location. We remove the v4 and v6 bug versions of the Print_tokens (these two 
bug version programs are data file errors). And retain 29 bug versions of the program in Jtcas 
(excluding the cases where the class attribute member definition error and so on do not fall under 
the category of the class method error). In addition, we select two distribution versions of the 
Nanoxml and regard them as the independent research objects (They differ relatively greatly in the 
number of class methods, which is 118 and 173, respectively), and select 13 bug versions from 
them. In this way, we have studied a total of 47 bug versions of the program. 

With the Dell server (Intel(R) Xeon(R) 3.07GHz CPU, 16GB of memory), we use the 
OpenJDK 1.7, Python 2.7, R2.31 as well as the bug location prototype tool MLM-FL developed 
by our team to establish the software environment for the experimental running on the basis of the 
Ubuntu 64-bit operating system (version 12.04). 

4.2. Evaluation Index 
The experimental evaluation indexes adopt the Expense index put forward by Renieris M and 

ReissSP. This index has been widely by many researchers. In this paper, we use Expense to 
represent the percentage of the number of class methods that the debugging personnel need to 
identify the class methods that contain the bug in all the class methods. And the calculation method 
is shown in the equation (3) as the following. 

154



 

( )exp ( ) 100 rank fense f
M

= •
 (3) 

4.3. Experimental Design 
In this paper, five methods based on the measurement method for the degree of skepticism of 

the program spectrum are selected for the comparison experiment. They are Naish1, Naish2, 
Wong Russel & RaoBinary equations which are the optimal formulas screened out by Xie 
Xiaoyuan et al. [22] through the theoretical analysis of 30 skepticism degree calculation formulas, 
which are as the following in turn: 

 
1, ( )

( )1( ) { CF F

s CS F

N f N
N N f NNaish f − <

− ==  (4) 

 

( )2( )
( ) ( ) 1

CS
CF

CS CS

N fNaish f N
N f N f

= −
+ +  (5) 

  ( ) ( )CFWong f N f=  (6) 

 

( )& ( )
( ) ( ) ( ) ( )

CF

CF UF CS US

N fRussel Rao f
N f N f N f N f

=
+ + +  (7) 

 
0 if  N ( )
1 if )( ) { CF F

CF F

f N
f NBinary f <
== ， 

，  N （  (8) 

 
 (a) Comparison of the bug location costs on the print tokens 

 
 (b) Comparison of the bug location costs on the jtcas 

155



 
 (c) Comparison of the bug location costs on the nanonxml 

Figure 2 Comparison of the location costs of the seven methods on the four programs 
Among them, f stands for the class method, NCF and NCS stand for the number of times that the 

class method is covered by the failed test cases and successful test cases, and NUF and NUS stand for 
the number of times that the class method is not covered by the failed test cases and successful test 

cases. Then the S CS USN N N= + and F CF UFN N N= + is established. 
In order to carry out the fuzzy multi-objective model analysis, we have designed the static 

indexes LOC and VG of the measurement method, which stand for the number of the lines in the 
code and the circle complexity in the class method, respectively. NCS, NUS, NCF and NUF are used to 
measure the dynamic behavior feature of the class method during testing process. In this way, we 
can develop the fuzzy multi-objective model on the variable set X = {LOC, VG, NCS, NUS, NCF, 
NUF}. For the purpose of discussing the RQ1, we have developed two types of fuzzy multi-
objective models: (1) The fuzzy multi-objective model that makes use of only the static information 
LOC and VG, which is denoted as Slogit; (2) The mixed variable fuzzy multi-objective model that 
is added with the dynamic information development on the basis of the variable set X, which is 
denoted as Hylogit. 

4.4. Results Analysis and Discussion 
Next, the results of the experiments on the four object programs are displayed and analyzed in 

turn (as shown in Figure 2). Figure 2 (a) shows the cost of the bug location using the seven methods 
in the Print_tokens. The mean values of the seven methods in the figure are compared. And it is 
easy to see that the mean cost of the Slogit is the smallest, followed by the mean cost of Hylogit, 
which shows that using the fuzzy multi-object model method can result in significantly lower cost 
than the other five optimal formulas for location on the basis of the program spectrum. However, 
we have also found that the cost of bug location of Slogit is significantly lower than that of Hylogit. 
The reason is that Hylogit has increased the variable that represents the dynamic information, and 
the fitting degree of the fuzzy multi-objective model constructed by NCS, NUS, NCF and NUF is 
reduced, which is not as good as the model fitting of the Slogit method. In addition, the location 
costs of Naish1 and Naish2 are exactly the same. 

In Figure 2, the location costs of the seven methods on the four programs, i.e. Wong, Russel & 
Rao, and Binary are compared, which are totally consistent. This has exactly confirmed the 
conclusion of Xie Xiaoyuan et al.: The efficiency of the first two formulas falls under the same 
optimal group, and the last three formulas fall under another optimal group. 

Figure 2 (b) shows the comparison of the costs for the location of 29 bugs in the Jtcas. From 
Figure 2 (b), it can be seen that Slogit has the lowest mean cost, followed by Wong, Russel & Rao 
and Binary. However, we noticed that Slogit has a very large range of fluctuations, which is 72.43% 
and 22.23% at the upper and lower quarter points. After careful investigation, we have found out 

156



that: When the class method with a very small number of lines of code contains a bug, the location 
cost of the Slogit method will increase significantly; otherwise, the location cost will decrease 
significantly. This finding is verified in the experiments of the other three experimental subjects in 
this paper. It is found that this rule is obviously present in the Print_tokens experiment. However, 
the performance in the two experiments of the Nanoxml program is not very obvious. And only a 
small amount of data is consistent with this rule. After analysis, we believe that the reason for this 
phenomenon may be that both the Jtcas and Print_tokens have extremely small size of the codes, 
and that the established model is affected by the LOC relatively significantly, which leads to the 
relatively large fluctuation in the results. 

Figures 2 (c) and Figure 2 (d) show the comparison of the experimental results of the two 
versions of the Nanoxml, respectively. These two versions of the program have relatively large 
scale (up to 3 ~ 4 KLOC) and relatively large number of methods (which reach 118 and 173, 
respectively). Therefore, the experimental results are representative to a certain extent. It can be 
seen from the figure that the cost of the bug location by using the fuzzy multi-objective model is 
lower than that by using the five optimal formulas on the basis of the program spectrum, and the 
cost of the Slogit method is higher than that of the Hylogit method. We have found that under the 
premise of the significant increase in the size of the program and the number of class methods, the 
introduction of the dynamic information during the program testing process will be conducive to 
constructing the multivariable Lo-gistic model (the fitness of the model is improved). Hence, the 
efficiency of bug location based on the established model will also be improved accordingly. 

5. Conclusions 
In this paper, a kind of bug location framework that integrates the fuzzy multi-objective model is 

put forward. The framework filters a set of static features that describe the level of the method class 
and the indexes of the real-time running information, applies the multivariate Logistic fuzzy multi-
objective modeling, uses it to locate the software bugs. The experiments show that the application 
of the multivariable Logistic fuzzy multi-objective and the introduction of the program running 
information can significantly improve the efficiency of the bug location. 

References 
[1] Smidts, C., Shi, Y., Prediction, S. R., Test, M., & Prediction, D. L. (2015). Advances in software 
engineering. Computer, 29(10), 47-58. 
[2] Ekanayake, J., Tappolet, J., Gall, H. C., & Bernstein, A. (2012). Time variance and bug 
prediction in software projects. Empirical Software Engineering, 17(4-5), 348-389. 
[3] Harter, D. E., Kemerer, C. F., & Slaughter, S. A. (2012). Does software process improvement 
reduce the severity of bugs? a longitudinal field study. IEEE Transactions on Software Engineering, 
38(4), 810-827.. 
[4] Mora-Gutiérrez, R. A., Rincón-García, E. A., Ponsich, A., Ramírez-Rodríguez, J., & Méndez-
Gurrola, I. I. (2016). Influence of social network on method musical composition. Artificial 
Intelligence Review, 46(2), 225-266. 
[5] Subramanyam, R., & Krishnan, M. S. (2015). Empirical analysis of ck metrics for object-
oriented design complexity: implications for software bugs. IEEE Transactions on Software 
Engineering, 29(4), 297-310. 
[6] Bella, E. D., Fronza, I., Phaphoom, N., Sillitti, A., Succi, G., & Vlasenko, J. (2013). Pair 
programming and software bugs--a large, industrial case study. IEEE Transactions on Software 
Engineering, 39(7), 930-953. 
[7] Harter, D. E., Kemerer, C. F., & Slaughter, S. A. (2012). Does software process improvement 
reduce the severity of bugs? a longitudinal field study. IEEE Transactions on Software Engineering, 
38(4), 810-827. 

157



[8] Bowes, D., Hall, T., & Petrić, J. (2017). Software bug prediction: do different classifiers find the 
same bugs?. Software Quality Journal(1), 1-28. 
[9] Ljubomir Lazić, & Stevan Milinković. (2015). Reducing software bugs removal cost via design 
of experiments using taguchi approach. Software Quality Journal, 23(2), 267-295. 
[10] Ullah, N. (2015). A method for predicting open source software residual bugs. Software 
Quality Journal, 23(1), 55-76. 
[11] Sharafi, S. M. (2012). Shadd: a scenario-based approach to software architectural bugs 
detection. Advances in Engineering Software, 45(1), 341-348.  
[12] Monden, A., Tsunoda, M., Barker, M., & Matsumoto, K. (2017). Examining software 
engineering beliefs about system testing bugs. It Professional, 19(2), 58-64. 
[13] Ullah, N., Morisio, M., & Vetrò, A. (2015). Selecting the best reliability model to predict 
residual bugs in open source software. Computer, 48(6), 50-58. 
[14] Mora-Gutiérrez, R. A., Rincón-García, E. A., Ponsich, A., Ramírez-Rodríguez, J., & Méndez-
Gurrola, I. I. (2016). Influence of social network on method musical composition. Artificial 
Intelligence Review, 46(2), 225-266. 
[15] Wang, S., & Yao, X. (2013). Using class imbalance learning for software bug prediction. IEEE 
Transactions on Reliability, 62(2), 434-443.  
[16] Shepperd, M., Song, Q., Sun, Z., & Mair, C. (2013). Data quality: some comments on the nasa 
software bug datasets. IEEE Transactions on Software Engineering, 39(9), 1208-1215. 

158


	Software Bug Location Algorithm on the basis of the Integration of Fuzzy Multi-objective Model
	Gao Yinsheng
	Abstract: Bug location is an important part of the software development process. Making full use of the structural features and behavioral features of the program is conducive to improving the bug location efficiency. In this paper, a kind of bug loca...
	1. Introduction
	2. Preliminary Knowledge
	3. Software Bug Location Algorithm
	3.1. Method Framework
	3.2. Model Construction
	3.3. Fuzzy Multi-objective Model
	3.4. Process of Bug Location

	4. Empirical Study
	4.1. Experimental Subjects and Environment
	4.2. Evaluation Index
	4.3. Experimental Design
	4.4. Results Analysis and Discussion

	5. Conclusions
	References



